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d is presented for describing the statistical characteristics of 
ous electrical activity of nerve units that have stochastic dead 
ing an impulse. The method is based on the determination of the 

possible functional forms of the marginal cumulative distribution of the inter- 
spike times that result from a concept of the nerve unit behavior suggested by 

applied in the appendix to an observed series of electrical impulses originat- 
ing spontaneously from an isolated vestibular nerve unit of the frog. 

arris and Flock. For the purpose of illustration, the method is 

INTRODUCTION 

"his paper presents a method of empirically modeling the statistical 
structure of a time-dependent series of electrical impulses spontaneously 
emitted by nerve units that have a stochastic dead time following each impulse. 
Examples of such nerve units are the Xenopus laevis lateral line units studied 
by Harris and Flock (ref. l), who showed that a pronounced dead time or refrac- 
tory period following the occurrence of an electrical impulse is characteris- 
tic of the observed interspike times. The approach is developed within the 
framework of a stationary stochastic point process and is based on the pos- 
sible functional representations of the marginal distribution function which 

given length of time. 
obability that an interspike time is less than or equal to a 

oore, Perkel, and Segundo (ref. 2) pointed out that neuronal spike 
trains (series of electrical impulses) may be analyzed within the context of 
stochastic point processes. 
dependent and the events of interest are discrete, for example, particle 
emissions o f  a radioactive source where the observed event is a particle 
emission at some point in time (ref, 3 ) .  One common method of representing 
the characteristics of such a series of impulses is to define the ordered 
sequence o f  interval times ~2~ ~3~ e where T~ denotes the interval 
between the (i - 1)st and ith impulse. A typical interval time process 
associated with a given series of impulses i s  shown in figure 1. 
particular case of electrical neuronal activity, the observed event would be 
the electrical impulse OF action potential measured at a point in time. 

Characteristically, these processes are time 

In the 



Figure 1.- Series of events and its associated interval time process. 
The variation T~ indicates the time between the (i-1)st and 
the ith event where the hash marks indicate the events. 

In a neuronal unit a pronounced dead time following an impulse will most 
certainly be reflected in the interspike (interval time) process. Hence, any 
method used to describe the activity of nerve units that exhibit a dead time 
should take this characteristic into account. Therefore the approach used in 
this paper includes a stochastic dead time in the conceptualization of a given 
interspike time which in turn provides a means of examining how such a dead 
time can affect the marginal distribution function of the interspike times. 
This function determines many of the statistical characteristics of the inter- 
val time process exhibited by neuronal units, such as discussed above, and 
under certain conditions it completely defines the process. Moreover, the 
method presented here utilizes the explicit forms of the marginal distribution 
function that result from the conceptualization of a given interval time as 
possible empirical models that may be useful in characterizing the spontaneous 
electrical activity of neuronal units heretofore discussed. 

The factors considered in the conceptualization are discussed, and for 
illustrative purposes, the method developed here is applied in the appendix 
to the observed spontaneous activity of an isolated vestibular nerve unit of 
the frog. 

APPROACH 

Factors Considered in the Conceptualization 
of the Interspike Time 

. In order to simplify the problem of statistically describing the spon- 
taneous electrical activity of neuronal units that exhibit a dead time, the 
general factors considered here are essentially those suggested by the work of 
Harris and Flock. The problem can then be idealized in the following manner. 

The unit is considered to be comprised of several interacting sensory 
cells, and the observed spike (action potential) is regarded as originating 
from one of the cells. Harris and Flock regarded the unit as capable of gen- 
erating t~ spike by spontaneous depolarization of a cell membrane defined here 
as event 1, or by the random excitation of  the sensory receptors of the cell 
defined as event 2. Although they concluded that spontaneous depolarization 
is the more likely, both hypotheses are considered here for the purpose of 
developing methods of characterizing the general situation. 
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Moreover, i f  an observed spike i s  due t o  t h e  spontaneous membrane 

of i nh ib i to ry  in t e rac t ion  and is  defined t o  be i n  cond3tion 1. 
e spike resul ts  from. t h e  random exc i t a t ion  of t he  sensory 

receptors  of t h e  cel l  (event 2), t h e  u n i t  en t e r s  a dead period whose dura t ion  
e f r ac to ry  period of the  nerve f i b e r ,  and t h e  u n i t  is 

depolar iza t ion  ( vent 1), t h e  u n i t  enters a prolonged dead period r e s u l t i n g  

bPe u n i t  conditions following t h e  Mth and (M+l)st sp ike  
events t h a t  must be accounted f o r  i n  t h e  s t a t i s t i c a l  cham 

i za t ion  of t h e  interval  time process are shown i n  f igu re  2. 

Figure 2.-  Possible u n i t  conditions following the  Mth and (M+l)st spike.  
The var iab le  T~~ denotes t h e  in te r -sp ike  time i f  the Mth sp ike  i s  
due t o  event k where i and k = 1 o r  2 ,  while ri denotes t h e  dead 
time i f  t h e  u n i t  following t h e  Mth spike i s  i n  condition i where 
i = 1 o r  2.  

In t h i s  f i g u r e  a given i n t e r v a l  of time i s  defined by one of four  pos- 
s i b l e  i n t e r v a l s  denoted by t h e  var iab les  r11, ~ 1 2 ,  ~ 2 1 ,  and ~ 2 2 .  A given 
i n t e r n a l ,  say 
in t h i s  case 1 2 .  The first subscr ip t  denotes t h a t  t h e  f i r s t  spike i s  due t o  
spontaneous depolar iza t ion  and the  second ind ica t e s  t h a t  t he  second spike is  

Thus the  o r i g i n a l  i n t e r n a l  time 

r1zS i s  defined by two adjacent spikes,  denoted by subscr ip ts ,  

'due t o  t h e  random exc i t a t ion ,  
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process, denoted by the ordered sequence of interval times ~ 1 ~ ~ 2 ~ ~ 3 ~  e 

may be redefined in terns of the four possible interval types. 
the interval time process may be given by ~ 1 1 ~ ~ 2 1 , ~ 1 2 , ~ 2 2 ,  a a Consecutive 
intervals are restricted because only interval type 
or ~ 2 1 ~  while only '21 OF '22 can fooB%ow ~ 2 2  OT ~ 1 2 .  Also, the interval 
types denoted by contain the dead time associated with the spon- 
taneous depolarization hypothesis, whereas ~ 2 1  and T~~ exhibit the dead time 
associated with the random excitation hypothesis. 

For example, 

~1~ OF ~ 1 1  can follow ~ 1 1  

TII and '12 

Thus, it is evident that the marginal distribution function of the inter- 
val times, a function of particular use in describing the statistical charac- 
teristics o f  the interval time process, and defined as 
where T denotes a given interval time or, equivalently, the probability 
density function f (t) = dFT(t)/dt 
istics of the four fiossible types of  interval times and the manner in which 
they are related in the interval time process. 
although conceptualizations such as used here are generally not unique, they 
are important as an economical means of studying the possible forms of the 
various statistical functions that may have use in empirically modeling the 
observed behavior of the process under investigation. To this end, the mar- 
ginal distribution function (henceforth referred to as the distribution func- 
tion) that results from the characterization of the interval time process shown 
in figure 2 is outlined in the following section. 

F T ( t )  = Prob (T t) 

is dependent on the statistical character- 

It should be noted that 

Derivation of Distribution Function and Statistical Description 
of the Interspike Times 

In general, the statistical characteristics of any stochastic point 
process cannot be adequately described by simple functions, such as the dis- 
tribution function, unless the process is stationary; that is, the joint dis- 
tribution of the number of events in k fixed time intervals is invariant 
under time translations. This implies that the number of events occurring in a 
period of time is proportional to the time length of the period, and, moreover, 
that the distribution of the interval times is identical for all the interval 
times contained in the process if the origin is defined by an arbitrarily 
chosen spike, 
of the interval time process is taken to be an arbitrary spike. 
framework, the distribution function (F,(t), o r ,  equivalently, the probability 
density function 
follows. 

For these reasons stationarity will be assumed and the origin 
Within this 

fT(t), of the interval time process may be derived as 

. The following variables describe the statistical characteristics of the 
Mth interval time (interval time between the (M-1)st and Mth spike), If it is 
assumed that the (M-1)st spike is due t o  event I (spontaneous depolarization) 
and, hence, the unit is in cond5tion I (dead time associated spontaneous 
depolarization), then 

the time length of the Mth interval if the Mth spike is due to 
event k where k = 1,2 Ik T 
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rl period following the  

T - r lo  t h e  waiting time, measured from the  end of t h e  dead period, 'k l k  
t h  spike which may be due t o  event k; k = 1 o r  2 

Similar ly ,  assume t h a t  the ( -1)s t  
and the  un i t  is  now i n  condition 2 (dead time associated with random exci ta-  
t i o n ) ,  and def ine  

spike i s  due t o  event 2 (random exci ta t ion)  

the  time length of t h e  Mth in t e rva l  i f  the  Mth sp ike  is due t o  
event k where k = 1 , 2  2k 

T 

'2 the  dead period following the (M-1)st spike 

T - r2, the  waiting time, measured from the  end of t he  dead period, k 2k S 

t o  the  Mth spike which i s  due t o  event k, k = 1 o r  2 

Further,  def ine t h e  conditional t r a n s i t i o n  p robab i l i t i e s  associated with the  
two possible  events (1 o r  2)  and the  r e su l t i ng  four  types of poss ib le  in t e rva l  

spike i s  due t o  event 1 given t h a t  t he  
times ' 1 1 9  '122 T 2 1 3  '22 by 

probabi l i ty  t h a t  t he  Mth 
(M-1)st 
denoted by '11.) 

spike was due t o  event 1 (The associated in t e rva l  time i s  

f312 (1 - 611) probabi l i ty  t h a t  t he  Mth spike i s  due t o  event 2 given t h a t  
the  (M-1)st spike was due t o  event 1 (The corresponding in t e rva l  time 
is  given by ~ 1 2 . )  

f32a probabi l i ty  t h a t  the  Mth spike is  due t o  event 1 given t h a t  the  
(M-1)st 
given by ~ 2 1 .  ) 

spike was due t o  event 2 (The corresponding in t e rva l  time is  

f322 (1 - B21) probabi l i ty  t h a t  t he  Mth spike i s  due t o  event 2 given t h a t  
the (M-1)st spike was due t o  event 2 (The corresponding in t e rva l  
time i s  given by ~ ~ 2 . )  

The probabi l i ty  densi ty  function of the in t e rva l  times may now be derived i n  
terms of the  t r a n s i t i o n  p robab i l i t i e s  611, 612, 621, B22 and the  probabi l i ty  
densi ty  functions 
t h e  possible  re la t ionships  of i n t e rva l  types between t h e  (M-l)st i n t e rva l  and 
the  Mth in t e rva l  as schematically shown i n  f igu re  3 .  

f T l l  ( t ) ,  fT12( t ) ,  fT21 ( t ) ,  fT2i( t )  o f  each in t e rva l  type from 
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T 

‘12 

Figure 3.- Possible  i n t e r v a l  types a t  adjacent i n t e r v a l s .  
Quant i t ies  B i j  denote the  t r a n s i t i o n  p robab i l i t y  t h a t  

t he  second in t e rva l  w i l l  be of a spec i f ied  type. 

If 

P1 p robab i l i t y  t h a t  the  next i n t e r v a l  t o  occur i n  the  i n t e r v a l  time process 
is  defined by t h e  var iab le  ~~1 

P2 probab i l i t y  t h a t  the  next i n t e r v a l  t o  occur i s  defined by -r12 

P3 p robab i l i t y  tha t  t he  next i n t e r v a l  t o  OCCUF i s  defined by ~~1 

p robab i l i t y  t h a t  t he  next i n t e r v a l  t o  occur is  defined by T~~ p4 
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where p1 + p2 + p3 + p4 = 1, the probability density function of the interval 
time process is 

or, equivalently, the distribution function is 

The probabilities 
tion probabilities 
ure 3, as follows: 

pl, p2> p3> and p4 can be expressed in terms of the transi- 
B , , ,  B12, B21, and f322, using the relations shown in fig- 

- 
p1 - Blip1 + f311P3 

p2 = '12p3 + BlZPl 

'3 - B21p2 + B21P4 

p4 = $22p4 + B22P4 

- 

Th e relationships show that 

P3 = P2 

Thus, the density function, given by equation (la), can be expressed in 
terms of the transition probabilities as 

A-3818 7 



Equation ( l c )  can be somewhat s implif ied if t h e  p robab i l i t y  dens i ty  funct ion of 
t he  random va r i ab le  X, i s  defined as 

and the  p robab i l i t y  dens i ty  funct ion of t he  random va r i ab le  X2 as 

E e tt ing 

we can write the  dens i ty  funct ion of the  i n t e r v a l  time T as 

which is  seen t o  be the  form of the  dens i ty  funct ion derived from a two-state 
semi-Markov process model ( r e f ,  4 ) .  

The average i n t e r v a l  time length,  t h e  variance,  and the  s e r i a l  cor re la -  
t i o n  funct ion are desc r ip t ive  c h a r a c t e r i s t i c s  of the  process t h a t  can be 
derived immediately from the  probabi l i ty  dens i ty  funct ion as given by equa- 
t i o n  ( l a )  o r  ( I C ) ,  The average in t e rva l  time length of the  process i s  given 
bY 

E ( T )  = aE(X1) c (1 - a)E(X2) (Id) 

. and. the  variance by 

Var(T) = aVar(X1) + (1 - a)Var(X2) + a ( l  - a ) [E(X1)  - E(X2)I2 ( l e )  
where 
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+ f32 

Finally, the serial correlation function of lag 
dependence between every kth interval time contained in the process, is shown 
by Cox and Lewis (ref. 4) to be 

k, which measures the linear 

It is seen that equation (la) or (IC) expresses the probability density 
of the interval time in terms of the density functions of the four intervals 
~ ~ 1 ,  '12, ~ ~ 1 ,  T ~ ~ ,  while equation (lb) establishes the same type of relation- 
ship for the distribution function. Also, equations (Id), (le), and (If) show 
how the descriptive characteristics as given by the mean, variance, and serial 
correlation function, depend on the characteristics of the four interval types, 
Hence, these relationships provide a basis for examining how the characteristics 
of the four interval types are reflected in a given interval of time. In order 
to obtain explicit functional forms that define the statistical characteristics 
of a given interval of time for these equations, plausible forms of the dis- 
tribution functions of ~ 1 1 ~  ~1~~ T ~ ~ ,  and ~2~ or, equivalently, r19 r2$ SI, 
and s2 must be postulated. Since the spontaneous electrical activity exhi- 
bited by neuronal units is generally considered to be a random and steady-state 
type phenomenon, it seems reasonable to assume the null-type hypothesis that 
the variables rl, SI, and s2 are random and are defined by events that occur 
according to the Poisson criterion of randomness (ref. 5) or approximately so. 
In such case, the density functions of these variables are expressed by 

A-3818 9 



where dl  can be considered the absolute minimum dead time of the unit if the 
last impulse is due to the spontaneous depolarization of the cell membrane 
(event I). However, the density function of the random variable r2 is taken 
to be 

f (t) = 6 ( t  - d2) 9 t - > 0 
r2 

(where 6 (  ) is the Dirac delta function) since r2 denotes the dead time of 
the unit if the last spike is due to the random excitation hypothesis which 
assumes no inhibitory interaction among the cells of the unit. 
the dead time in this case should be directly related to the refractory period 
of the nerve fiber, denoted here by d2. Since 

Consequently, 

-r12 = r l  + s2 

it follows that the density function of the variables ~ ~ 1 ,  ~l~~ ~~1~ and ~~2 
is given by 

10 A-3818 



t he  probabi l i ty  dens i ty  of an interval of time, 
)B i s  e x p l i c i t l y  given by 

The corresponding d i s t r i b u t i o n  function is  

- A  (t-d2) -A (t-d2) 
3 t L d l  S 2  - 822e S1 - (1 - B22)e 

The average in t e rva l  time length,  from equation ( ld ) ,  i s  expressed by 
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here 

+ d  

and 

From equation (le), the variance is found to be 

Var(.c) = crVar(X1) + (1 - a)Var(X2) + a(l - a)[E(Xl) - E(X2)I2 (2d) 

where Var(Xl), Var(X2) are now explicitly written as 

and 

Similarly, the explicit form of the serial correlation function, obtained by 
substituting the above expressions for 
into equation (If), is then given by 

E(X1), E(X2), Var(Xl), and Var(X,), 

Thus, under the null-type hypothesis, the functional form of the distribu- 
tion function as given by equation (2b)> or equivalently, the probability den- 
sity function given by equation (2c), is seen to be the weighted sum of, at 
most, three exponential terms and the explicit forms of the descriptive charac- 
teristics of a given interval of time expressed by equations (2c), (Zd), and 
(2e). 
tion (2b), may be derived by making various assumptions about the transition 
probabilities B11, 622. These special cases represent different types of 
interval time processes with respect to their statistical characteristics, and 
three such processes of special interest are discussed in the following: 

Moreover, special cases of the distribution function, given by equa- 

12 A-3818 



le If Bal = l - B p p O  equation (2b) then represents the probability 
enewal process is a station 

. . is not ependent on orde 

endently and identicall 
mess originally ‘denot 

ation (2e), is thus equal to zero for 

ypothesis of spike generation is not sig- 
r2# s2 have no effect; thus,.B11 = 1, 822 = 0. 

Bll, 622 satisfy the relationship f311 = 1 - B 2 2 9  the 
the distribution function given by equation (2b) reduces 

which is seen to be the distribution function o f  the simplest generalization 
1-order Erlang process. en A = a = A, the distribution 

function then becomes s1 r1 

which is seen to be the Gamma distribution function of order 2 (chi-square, 
Bearson type I 

3. Finally, if the spontaneous depolarization hypothesis of spike genera- 
tion is not signi icant, then the variables rlP s 1  have no effect; thus 
€311 = 0, and 622 = 1. Again, since these values of 611, B22$ satisfy the 
relationship 1311 = I - B Z 2 ,  the process is renewal and the distribution func- 

iven by equation (2b) reduces to 

-A (t-d2) 
s t ’ d 2  F , ( t )  = 1 - e  s2 

which is the negative exponential distribution function characteristic of a 

Its immediately suggest the possible functional forms of the 
ction that may be useful in empirically modeling the sponta- 

neous spike train activity of neuronal units exhibiting a dead time following 
each electrical impulse, Specifically, the examination of the null-type situa- 

e s t s  that the distribution function of the interval time process 
by such neuspo 1 units could be possibly described by: 

1, The negative exponential as given by equation (3c), 
OF 
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2 .  The generalized Erlang as expressed by equation (3a) or its special 
case, the gamma of order 2 given by equation (3b), if the process is renewal, 
and 

3. A weighted sum of a mixture of two generalized Erlangs and a mixture 
of two negative exponential distributions as shown in equation (2b), if the 
process is renewal or nonrenewal. 

The plausibility of these results is somewhat substantiated from the 
standpoint that the negative exponential, the distribution function of a 
Poisson process, has been used to fit the observed distribution characteristics 
of neuronal spike trains by such authors as Rodieck, Kiang, and Gerstein 
(ref. 6 )  while a form of the gamma distribution was employed by Kuffler, 
Fitzhugh, and Barlow (ref. 7 ) .  

Therefore, the results of this paper suggest the following procedure for 
empirically modeling the observed distribution of interval times and thereby 
describing the statistical characteristics of the spontaneous electrical 
activity of nerve units exhibiting a dead time: 

1. Test the stationarity and renewal characteristics of the interval 
time process. 
these hypotheses see refs. 4 and 8. )  

(For a discussion of actual tests that can be used to examine 

2. 
empirically model the observed distribution of interval times in the following 
manner : 

After determining the stationarity and renewal characteristics, 

If the process is found to be stationary but not renewal, then the 
appropriate form of the distribution function to use in empirically 
modeling or fitting the observed distribution is given by a weighted 
sum of exponentials of the form 

-X1t -A2t 
F,(t) = 1 - Ale - A2e to 2 t 5 tl 

-X3t -X1t -X2t (4a) 
FT(t) = 1 - A3e - (A1 - A4)e - (A2 - A5)k , t - > ti 

where AI, A,, A3> Aqr A5,  h l P  X2, and X3 are parameters subject to the 
restrictions that 

-Alto -X2to 
Ale + A2e = 1  

3tl -Xltl -A2t1 
A3e + A4e + ASe = o  

and 

14 

hi > 0, i = 1, 2, 3 - 
A- 3818 



If, however, t FOCBSS is foun to be renewal, then in addition to the 
weighted sum o entials shorn above, the functional forms of the distribu- 
tion that may be 
by the negativ 

to empirically mo e% the obsemed.distribution are given 

t > d  -A (t-d) 
F,(t) = P - e 

_I 

the generalize 

t > d  hlX2 - X i  (t-d) -A2(t-d) - PJt) = 1 - e - e  
A1 - A2 

l case, the gamma of order 2, _ _  

F T ( t )  = 1 - e -X(t-d)[l -+ X(t - d)], t - > d 

It should be noted that in the case of a renewal processp the distribution 
function or, equivalently, the probability density function of the interval 
times completely specifies the statistical characteristics of the interval 
time process. 

CONCLUDING REMARKS 

The conceptualization of the spontaneous spike trains originating from 
neuronal units exhibiting a pronounced dead time as depicted in figure 2 ,  
albeit a naive representation of a complex process,, enables one to study the 
possible forms of the marginal distribution function of the interspike times 
contained in such process. 
has use in establishing a reference point to determine any deviations from 
randomness that may be exhibited by an observed interspike (interval time) 

The resultant examination of the null-type case 

reover, the explicit forms of the distribution functions that have 
een determined in this paper may have use in empirically modeling the observed 
istribution of the intervals contained in the process. Specifically, if the 
rocess is found to be renewal, then the negative exponential (eq. (4b)), the 

a of order 2 (eq. (4d))$ the generalized Erlang (eq. (4c)), or the weighted 
sum of exponentials (eq. (4d)) are the possible functional forms. If the 
process is nonrenewal but stationary, then the weighted sum of exponentials 
(eq, (421)) is the most appropriate form of the distribution function. 

The determination of the most appropriate empiric model is important since 
the distribution function describes many of the statistical characteristics of 
the spontaneous electrical activity of neuronal units heretofore discussed. 

demonstrating ho 
oreover, the fu ctional form of the distribution may be used as a basis for 

evoked activity differs from spontaneous activity. 

es Research Center 
1 Aeronautics and Spa e Administration 
offett Field, Calif. 9 035, November 20, 1970 
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APPEND1 X 

I LLUSTMT IVE EXAMPLE 

The method of empir ical ly  modeling the  d i s t r i b u t i o n  function o f  the  
in t e rva l  times shown on pages 13-15 i s  applied t o  the  observed i n t e r v a l  time 
process r e su l t i ng  from the  spontaneous electrical a c t i v i t y  of an i so l a t ed  ves- 
t i b u l a r  neuronal u n i t  of a f r o g s 1  
t h i s  u n i t  were measured over time and the  r e su l t i ng  i n t e r v a l  time process con- 
s i s t e d  of 997 spikes  or 996 i n t e r v a l  times where t h e  i n i t i a l  spike defined the  
o r ig in  of the  process.  

. 

The e l e c t r i c a l  impulses or ig ina t ing  from 

STATIONARY AND RENEWAL CHARACTERISTICS 

The hypotheses of s t a t i o n a r i t y  and renewal were examined and it was 
determined by nominal 5 percent leve l  tests t h a t  the  in t e rva l  time process 
could be character ized as being s t a t iona ry  and renewal. The t e s t s  used t o  
examine these  hypotheses a r e  those suggested by Lewis ( r e f .  8) on pages 207- 
208 and 212-213. 
ining whether t he  mean rate of spike occurrence remained constant over time 
and is  based upon the  necessary condi t ion t h a t  no t rends over time e x i s t s  i n  
the  mean rate of spike occurrence i f  t h e  process i s  s ta t ionary .  S imi la r ly ,  
the tes t  used t o  examine the  renewal hypothesis is  based upon the  necessary 
condition of a renewal process t h a t  t he  s e r i a l  co r re l a t ion  funct ion i s  zero 
f o r  a l l  lags .  

The s t a t i o n a r i t y  hypothesis was e s s e n t i a l l y  t e s t e d  by exam- 

Empirically Modeling the  Cumulative Distr ibut ion 
o f  In t e rva l  Times 

The empiric d i s t r i b u t i o n  is  ca lcu la ted  by f i rs t  ranking a l l  the  in t e rva l  
times i n  order of  magnitude t o  obtain t h e  ranked series t l ,  t 2 ,  t 3 ,  e . .. 
The observed cumulative d i s t r i b u t i o n  funct ion may then be computed by 

where N 
The. resu l tan t  empiric d i s t r i b u t i o n ,  shown i n  2 m s  increments, and the  descr ip-  
t i v e  s ta t is t ics  of the  observed in t e r sp ike  times a r e  shown i n  the following 
t ab le .  

i s  the  t o t a l  number of i n t e r v a l s  contained i n  the  observed process.  

'The .data were co l lec ted  by R. S. Carpenter, Ames Research Center, 1969. 
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~ 

20 
22 
2 
26 
28 
30 
32 
34 
36 
38 
40 
42 

.0733 

* 1556 
e 2209 
e 2821 
* 3444 
e 4167 
e 4789 
5281 
,5643 
.6104 
,6486 
.6787 
.7189 
7470 

Distribution 

Q e 7701 
7972 

e 8213 
.a353 
8524 

0 8655 
8785 
.8966 
a 9046 
9127 

D 9197 - 9297 
.9378 
9468 
.9518 
9568 
.9598 

m interval time = 8.1 ms 
Maximum interval time = 129.0 ms 

- 
Time 
ms' 
78 
80 
82 
84 
86 
88 
90 
92 
94 
96 
98 
100 
102 
104 
106 
108 

Distsibutior 

0 e 9649 
a 9679 
,9689 
97 29 
.9789 
m 9999 
a 9829 
.9859 
.9880 
.9910 
./ 9920 
.9940 
.9950 
e 9950 
.9950 
* 9980 

(Average interval length = 34.057 ms; variance = 341.957 ms2 

The procedure outlined on pages 13-15 of this paper shows that if the 
process is renewal, then the possible forms of the distribution are given by 
those of the negative exponential (eq. (4b)), the generalized Erlang 
(eq. (4~))~ its special case the gamma of order 2 (eq. (4d)), or the weighted 
sum of exponentials (eq. (4a)). The method employed here to establish an 
empcric model of the distribution function was to use sequentially the above 
forms of the distribution until an adequate fit of the observed distribution 

ominal 5 percent Kolmolgorov-Smirnoff goodness of fit test 
ge the adequacy of t e fit and this test is based upon 

the statistic 

where F,(t) is the hypothesized distribution. The 5-percent two-sided crit- 
ical value of this statistic is given by l.358/ f i  which in our case is equal 
to 0.043 since 

gative exponential distribution function given from equa- 
tion (4b) by 

-A  (t-d) F,( t )  = 1 - e 9 
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was initially used to fit the observed distribution. 
was used to estimate the rate parameter A and the minimum dead time d. 
This method involves equating the theoretical moments to the corresponding 
observed moments; and for the present case, the resulting equations are 

The method of moments 

E(T) = 1/A + d = 34.057 

and 
Var(.c) = (1/A)2 = 341.957 

The theoretical form of E ( T )  , and Var (T) can be obtained from equations (2c) 
and (2b) by setting 
table 1. 
spikes/ms and d = 15.56. The observed value of the KS statistics was found 
to be 0.098 which is seen to be greater than the 5-percent critical value of 
0.043, thus indicating a significant lack of fit. Hence, the generalized 
Erlang distribution function, given from equation (4c) by 

611 = 0, 622 = 1 while the observed moments are shown in 
The estimates of the parameters are then seen to be A = 0.05408 

9 t l d  1 F,(t) = 1 - ' IA2  [e-Ai (t-d) - e-Az (t-d) 
A 1  - A2 

was then used in the attempt to find an adequate empiric model. 
method of moments was employed to obtain estimates of the parameters 
d, where the equations involving the first two moments are expressed by 

Again, the 
A I : ,  X2, 

+ d = 34.057 
A1 + 

E(,) = 
A1A2 

A12 + A 2  2 

1 1 2 x 2 2  
Var(-r) = = 341.957 

or 

(34.057 - d) k 42(341.957) - (34.057 - d)2 
A 1 9 A 2  = 

(34,057 - d) - 341.957 

The first and second moments, E ( T )  and Var(T)> may be obtained from equa- 
tions (2c) and (2d) by substituting the values l and 0 for B11 and B22. For 
a real solution to exist, d must satisfy the inequality 
o r  d < 7.905. Also, since d > min(t1 . . . t9g6):, where The minimum time 
from table 1 is seen to be 8.127 it follows that 7.905 < d 
bounds define well the possible values of d, and the mFdpoint of the interval 
was taken to be the estimate of d. Thus d = 8.01, and when this value of d 
is substituted into the above relationships, it is seen that A 1  = 0.070459 
and A2 = 0.084357. The observed value of the KS statistic was computed to 
be 0.028, and since this value is less than the 5-percent critical value, it 

d < 34.057 - $683.914 

8.125. These 
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was concluded at the generalized Erlang function given explicitly by 

t $.OB 

uate empiric model of the observed distribution. 
arisons, the fit given by the negative exponential and the 

For purposes of 

Erlang distribution functions are shown in figure 4. 

e- o 
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